Effect of glyphosate on symbiotic N2 fixation and nickel concentration in glyphosate-resistant soybeans
نویسندگان
چکیده
Decreased biological nitrogen fixation in glyphosate-resistant (GR) soybeans has been attributed directly to toxicity of glyphosate or its metabolites, to N2-fixing microorganisms. As a strong metal chelator, glyphosate could influence symbiotic N2 fixation by lowering the concentration of nickel (Ni) that is essential for the symbiotic microorganisms. Evaluation of different cultivars grown on different soil types at the State University of Maringá, PR, Brazil during the summer 2008 revealed, significant decreases in photosynthetic parameters (chlorophyll, photosynthetic rate, transpiration and stomatal conductance) and nickel content with glyphosate use (single or sequential application). This work demonstrated that glyphosate can influence the symbiotic N2 fixation by lowering nickel content available to the symbiotic microorganisms. 2009 Elsevier B.V. All rights reserved.
منابع مشابه
Simulated glyphosate drift influences nitrate assimilation and nitrogen fixation in non-glyphosate-resistant soybean.
Nontarget injury from glyphosate drift is a concern among growers using non-glyphosate-resistant (non-GR) cultivars. The effects of glyphosate drift on nitrate assimilation and nitrogen fixation potential, nodule mass, and yield of non-GR soybean were assessed in a field trial at Stoneville, MS. A non-GR soybean cultivar 'Delta Pine 4748S' was treated with glyphosate at 12.5% of use rate of 0.8...
متن کاملImpact of glyphosate on the Bradyrhizobium japonicum symbiosis with glyphosate-resistant transgenic soybean: a minireview.
Glyphosate-resistant (GR) soybean [Glycine max (L.) Merr.] expressing an insensitive 5-enolpyruvylshikimic acid-3-phosphate synthase (EPSPS) gene has revolutionized weed control in soybean production. The soybean nitrogen fixing symbiont, Bradyrhizobium japonicum, possesses a glyphosate-sensitive enzyme and upon exposure to glyphosate accumulates shikimic acid and hydroxybenzoic acids such as p...
متن کاملNitrogenase activity, nitrogen content, and yield responses to glyphosate in glyphosate-resistant soybean
Transgenic glyphosate-resistant (GR) soybean [Glycine max (L.) Merr.] expressing a glyphosate-insensitive 5-enolpyruvylshikimate-3phosphate synthase (EPSPS) enzyme has provided new opportunities for weed control in soybean production. However, glyphosate is toxic to the soybean nitrogen-fixing symbiont, Bradyrhizobium japonicum, as its EPSPS enzyme is sensitive to glyphosate. The effects of gly...
متن کاملIsoflavone, glyphosate, and aminomethylphosphonic acid levels in seeds of glyphosate-treated, glyphosate-resistant soybean.
The estrogenic isoflavones of soybeans and their glycosides are products of the shikimate pathway, the target pathway of glyphosate. This study tested the hypothesis that nonphytotoxic levels of glyphosate and other herbicides known to affect phenolic compound biosynthesis might influence levels of these nutraceutical compounds in glyphosate-resistant soybeans. The effects of glyphosate and oth...
متن کاملAssessment of glyphosate-resistant horseweed (Conyza canadensis L. Cronq.) and fleabane (Conyza albida Willd. ex Spreng) populations from perennial crops in Greece
The extended use of glyphosate resulted to its reduced efficacy against increasingly problematic weeds, such as Conyza spp. The objectives of this study were to determine the occurrence of glyphosate resistance in horseweed (C. canadensis) and fleabane (C. albida) populations in Greece, to evaluate the effect of weed growth stage on glyphosate efficacy under controlled environmental condit...
متن کامل